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Quantum Spacetime 

A. R. M a r l o w  1 
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After a review and reformulation of previous results, further developments in the 
construction and interpretation of a quantu m-theoretic model of general relativistic 
spacetime are presented. A theorem is proved that clarifies the nature of the 
boundaries separating the four-dimensional facets of the resulting piecewise linear 
model, and a simple example of such a spacetime is detailed. The precise way 
in which any such model unifies the essential features of both quantum theory 
and general relativity is discussed. 

In a previous paper (Marlow, 1995, hereafter referred to as I) a construc- 
tion of  general relativistic spacet ime as a piecewise linear manifold within 
the structure o f  quantum observables was presented; here, after a review and 
reformulation o f  that construct ion and its motivation, some further results 
are established for the model and its interpretation. 

1. B A S I C  F O R M U L A T I O N  

The only input needed for the construct ion o f  quantum spacetime is an 
ordering parameter  t for states in quantum p r o c e s s e s - - t o  begin we will 
assume that t runs" through a finite collection o f  proper time instants for some 
observer, but later other parameters may  be equally useful. (Initially, the 
finiteness requirement simply ensures that the construct ion is well defined, 
and allows us to avoid the complicat ing distraction o f  discussing limiting 
procedures on a first formulation; as will become evident, however,  finiteness, 
or at least countability, seems to be inherent in the actual physical processes 
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as well.) Then, on noting that a product of representations of the identity 
operator on a Hilbert space is still the identity operator 

r -  lq I, 
l 

and allowing each I, to stand for a Dirac-style expansion of the identity in 
terms of a complete orthogonal set of one-dimensional projections 

t, = Z In,><,,, J 
tt! 

where each index n, runs through the integer labels for a complete orthonormal 
basis of the Hitbert space, we have 

as a possible expansion of the identity. Then a simple reversal of the order 
of product and summation yields a Feynman-style expansion of the identity 
as a s t tm o v e r  q u a n t u m  p r o c e s s e s :  

where now each n in the summation represents an integer-valued function t 
---) n(t) of the ordering parameter t, and each product 

1-~ I n(t))(n(t)l 
t 

specifies a possible quantum process with quantum states represented by unit 
vectors In(t)) as intermediate stages. Sequences of quantum state projections 
such as 

l n ( t ) ) ( n ( t ) l  . . .  l n ( t ' ) ) { n ( t ' ) l  . . .  tn(t"))(n(t")l 

above are usually referred to as q u a n t u m  h i s t o r i e s  in the literature on the 
consistent history interpretation of quantum theory [for a review article, see 
Saunders (1993)]; we will use the terms p r o c e s s e s  and h i s t o r i e s  

interchangeably. 
We have derived Feynman's basic expansion of the identity as a sum 

over alternative quantum histories (1) in the above way, first to show that it 
can be done without any reference to a preexisting four-dimensional space- 
time, and then to set the stage for confronting the basic question remaining 
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unanswered in 20th-century physics: How do quantum processes, originally 
represented purely as sequences of projection operators on an infinite-dimen- 
sional Hilbert space, acquire four-dimensional spacetime labels, or alterna- 
tively, how do the four dimensions of spacetime arise from pure quantum 
theory as an apparent background for quantum processes? Obviously, in 
raising this question we are implicitly rejecting the usual procedure of simply 
inserting the classical dimensions by hand as a sort of background "ether" 
for quantum theory. As is clear from the previous paper, we believe that the 
four-dimensional appearance of the observed universe naturally arises from 
the structure of quantum theory itself, and hence we assume this latter theory 
alone as the best fundamental account of physical processes yet discovered, 
without any need for supplemental four-dimensional assumptions. 

To continue the review of how this comes about, we note that every 
two distinct state operators In( t , , ) ) (n( t , , )  I and I n ( t b ) ) ( n ( t b )  I in a single quantum 
process of the expansion (1) uniquely specify the four-space b°,nb of self- 
adjoint operators on the complex two-dimensional Hilbert subspace ~,]h 
spanned by In( t , , ) )  and I n ( tb )} .  A standard operator basis for b°4b consists of 
Pauli operators on ~,b, e.g., 

¢rabo = I n ( t , , ) ) (n ( t , , ) l  + I n ± ( t h ) ) ( n ± ( t b ) l  

crabl = In ( t ,~ ) ) (n±( th ) l  + f n ± ( t b ) } ( n ( t , , ) l  (2) 

crab2 = i( I n l ( tb) ) (n( t , , )  l --  I n ( t , ) } ( n ± ( t b ) l )  

Or,b3 = I n ( t , , ) ) (n ( t , , ) l  --  I n ± ( t b ) ) ( n l ( t b ) l  

where I nl(tb)) is the uniquely defined (up to a complex phase) unit vector 
orthogonal to t n ( t~ ) )  in ~,~t,- 

It is the space 5e~o of self-adjoint operators on ~,2,b that we take as the 
definition of the spacetime "between" or "connecting" the states defined by 
In(ta)) and ]n( tb)) .  More technically, fT~ b will define the tangent four-plane 
to the region of our piecewise linear general relativistic manifold containing 
the quantum events specified by the pair of states. In terms of the basis o',,h~, 
Ix = 0, 1, 2, 3, defined above, a general pair of elements of such a spacetime 
is (using the standard summation convention) 

x = x~cr,,b~, y = yVffab v 

while the usual Einstein metric is specified, in terms of the trace function, as 

g ( x ,  y )  - 1/2 tr(2t"y) (3) 

where 

A~" ~ X00"ab0  - -  xiO'abi 
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defines the operation of space inversion (reversal of sign of the trace zero 
elements of 5e~b). Baylis et al. (1992) present a persuasive case for the Pauli 
operator structure (including the full Clifford algebra of all operators on 
~]~,) as the natural structure for special relativistic physics; to the author's 
knowledge, the present work and I are the first instances where it is argued 
that the structure is equally natural for general relativistic physics. 

To see precisely how 5°4 h defines the spacetime between In(t,,)) and 
[n(tb)), suppose we perform a general Feynman sum-over -processes  analysis 
of the quantum amplitude (n(tb) in(t,,)), that is, we insert an expansion of the 
identity such as (1) above to get 

(4) 

Then, while very general processes appear in the abstract expansion (1), the 
only processes that make a nonzero contribution to (3) are those that contain 
no operator components orthogonal to either I n(th)) or In(t`,)) [Proof: From 
the construction of (1) only copies I, of the identity operator separate I n(tb)) 
and I n(t`,)) from any intervening operators, and so any operators in (3) orthogo- 
nal to either of the given vectors get projected out and make no contribution 
to the analysis.] Hence, the only part of any vector In(t)) in (3) that makes 
a nonzero contribution to the analysis can be written as 

cr`,bOt n(t)) = C`,(t) I n(t`,)) + Cb(t) t n(to)) 

Cu(t) --/: 0, Cb(t) --/: 0 

and so a complete sum over all processes making a nonzero contribution in 
(3) can be expressed as 

(5) 

We now take over from I the easily checked fact that the compression 

h`,b( t ) = tr,,o0 I n(t))(n(t)  I tr ubO 

of arbitrary projections such as I n(t)}(n(t)l  into 5P4b yields only l ightlike 
elements, i.e., 
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h~b(t) = ½P(t)[cr,,i,0 + cr,t,(t)] 

where 

p(t )  ~ (n(t) l{r,boln(t)) ~ 0 

and {r,,h(t) is the spacelike (that is, zero-trace) element of  Se,4b given by 

cr,,h(t) = sin 0(t) cos qb(t) {r,,bl 

+ sin 0(t) sin +(t) Cr,,b2 + COS 0(t) {r,h3 

with 

(6) 

cos 0(t) = p(t)-I[  I(n(t , , ) ln(t)) l  2 _ 1 (n±(th) ln( t)) l  2] 

sin 8(t) cos qb(t) = p( t ) - t [ (n±( tb ) ln ( t ) ) (n ( t ) l n ( t , ) )  

+ (n( t , , ) ln( t ) ) (n( t ) tn l ( tb) )]  

sin 8(t) sin qb(t) = ip ( t ) - I [ (n l ( th ) ln ( t ) ) (n ( t ) ln ( t~ ) )  

-- (n( t , , ) ln( t ) ) (n( t ) ln±(tb))]  

To summarize, a Feynman sum-over-processes analysis in terms of  
possible quantum processes connecting any two distinct quantum states natu- 
rally restricts to only lightlike processes in a four-space of  observables. As 
in I, now we argue that the piecing together of such four-spaces of  quantum 
observables, Se,4t,, b%, etc., very much as in the construction of  one of Buck- 
minster Fuller's geodesic domes, can give a viable theory of  the quantum 
origin of  general relativistic spacetime. The obvious advantage of such a 
theory is that it removes any potential conflict between general relativity and 
quantum theory by actually embedding the structure of  spacetime in the 
observable structure of  quantum theory-- the  two theories will no longer be 
in rivalry, but one will have its complete existence within the other, where 
it can be interpreted accordingly. The basic difference between standard 
general relativistic manifolds and the type proposed here, aside from the fact 
that our manifolds are realized in terms of quantum observables, is that 
the quantum manifolds are only piecewise smooth, with nondifferentiability 
occurring at the boundaries separating the different four-planes; we note that 
such manifolds are also piecewise linear, with all curvature concentrated at 
the same boundaries. 

It is this concentration of  curvature or bending at the boundaries separat- 
ing the quantum four-spaces that, in paper I. we associated with the presence 
of matter. In doing this, we emphasize the important distinction that must be 
made in any Feynman-type analysis between actual i zed  states (i.e., those 
that are actually prepared or in some way irreversibly recorded) and those 
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that are merely potential. Potential states or processes provide alternatives 
that must be summed over in analyzing and computing quantum amplitudes 
simply because no one of them has been given any more status in reality 
than the others, while actualized states rule out other competing alternatives 
and are not summed over in computing quantum amplitudes. It is these latter 
actualized states that we associate with matter and the boundaries defining 
distinct four-planes, while the merely potential states get tailored by the actual 
states to fit into and define the vacuum light cones connecting the actual 
states. Since the actualized states of matter imply a permanent record, the 
situation was summed up in I by the aphorism "Matter is memory." 

2. F U R T H E R  RESULTS 

In presenting the above structure in I as a candidate for the microscopic 
quantum structure of general relativistic spacetime, no specific example of 
such a manifold was presented. Here we remedy that, first proving a result 
concerning the possible bounding intersections that can be present in a 
piecewise linear manifold formed from four-planes 5o4 of self-adjoint opera- 
tors on various two-dimensional subspaces ~2 of Hilbert space. 

Theorem. Given two distinct four-spaces 5OJ and 5 o4 consisting of the 
self-adjoint operators on two-dimensional subspaces ~ and ~ of a complex 
Hilbert space, if the intersection 5O4 A 5O~ contains nonzero operators, then 
5O4 N ~ consists of all real multiples of some projection t ~){~t, where I ~) 
is a unit vector in ~ N ~ .  [Stated in the obvious relativistic terminology, 
this means that if two distinct operator spacetimes have a nontrivial intersec- 
tion, that intersection can consist only of a single lightlike ray--nei ther  
spacelike nor timelike rays may occur in the intersection.] 

Proof. The theorem is almost obvious. To make it completely so, classify 
the operators in 5O'~ and 5O4 according to the dimension of their range spaces 
(i.e., according to rank), and note that if any operators with two-dimensional 
range were in the intersection, then we must have ~ = ~ ,  and so 5O~ = 
5O4, contradicting the premise of distinct operator spaces. By inspection, this 
rules out the operators constructed in (2) above, and the explicit exclusion 
of the trivial rank-0 case (the zero operator) leaves only the rank- 1 operators. 
Since these are all multiples of projections such as I~){01, and since no 
more than one such projection can be shared in common if 5O'~ =~ 5O~, the 
theorem follows. 

Finally, writing the identities 

l@@i = ½ [ i @ @ i  + i ~ f } @ f l ]  + ½ [ i @ @ t  - l ~ f } @ f l ]  

= ½[O'~o + o'~,] 
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= ½[¢r20 + ¢r2,1 

makes clear the lightlike structure of the rank-I operator I+)(0l in both 
spaces 554 and 554 as claimed, where I~¢) and I ~ )  are unit vectors orthogonal 
to I~) in ~ and ~ ,  respectively. 

Thus the only "bends" or "creases" in a piecewise linear four-manifold 
of operators such as we propose here must lie solely along lightlike directions 
defined by pure quantum states. Assuming now that any a c t u a l i z e d  quantum 
history will consist of a discrete sequence of distinct states ordered by instants 
of proper time for some observer, e.g., 

• . .  I t~(t,))(+(q)l - . .  l+(tz))(d:(tz)l " "  I t~(t3))(+(t3)l "'" 

it is straightforward to see how each such history naturally generates its own 
piecewise linear spacetime manifold 5 °4 of quantum observables: since each 
pair of states compresses all potential quantum processes connecting the 
states into the operator spacetime defined by the pair, we can symbolically 
represent the manifold as the sequence of tangent four-planes intersecting in 
the lightlike rays spanned by the elements 

h( t i )  = I t~(t i ))( t~(t i ) t  

= I~--[(yi_ -4- cri_ hi(ti)] . I , i , O  

= ½[O'i,i+h0 + ~i, i+l( t i )]  

i.e., for Ai -= {rk( t i ) :  r ~ R}, 

• -- n 554 1 n Ai  n 554 2 n A 2 N 55~3 n A3 n 55~4 n - - .  

We can parametrize such an operator-valued manifold 554 in an obvious 
way as the four-parameter family x( t ,  r, 0, ~b) of self-adjoint operators 
defined by 

x( t ,  r, O, qb) = t~ri.i+hO + rcri.i+i(O, ~b) (7) 

for 

ti < t < ti+t, r, 0, + arbitrary 

where oi.i+1. 0 and O'i,i+1(0 , (~)) are unit timelike and spacelike components as 
in (2) and (6) (with 0 and + independent parameters now with no dependence 
on t), and at each ti there is the dimensional singularity defined by the state 
l+( t i ) ) (~ ( t i ) l  = ~.(ti), where the dimensionality of the manifold reduces from 
four to one. As noted before, we interpret these lightlike one-dimensional 
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"boundaries" as indicating the actual presence of matter (an irreversibly 
recorded state) as opposed to the potentiality for matter, represented by the 
four-dimensional vacuum spacetimes connecting the singularities. 

To give an interpretation of the potential trajectories in the vacuum 
spacetime we can use either the SchrOdinger picture (evolving states) or the 
Heisenberg picture (evolving observables), and, as a general principle, we 
find that all of the standard structures of quantum theory and quantum field 
theory project onto the piecewise linear four-manifold M defined by a 
sequence of  states hi = I t ~ i ) ( ~ i l .  Specifically, over each linear piece ~.i+4 l 
of M, define the projection 1-Ii.i+~ on the space A of  all self-adjoint operators 
a on the Hilbert space of quantum theory by 

I-Ii.i+lOt ~ fYi.i+l.ooLO'i.i+l.O 

This provides a general bundle structure for self-adjoint operators over 
4 S04 Li+I, with the fiber over any x E b°/,,+~ defined as the space of operators 

a such that [ I i . i+ lOt  = X. We posit this basic structure as the general framework 
for all the successful gauge theories for particle fields over Minkowski space, 
and we can now begin to see how such theories might be extended to our 
piecewise linear general relativistic manifold. 

Thus, from the Feynman sum-over-processes formulation of quantum 
theory we are inevitably led to replace the locally Lorentzian manifold of 
general relativity at a fundamental quantum level with the almost everywhere 
linear Minkowskian geometry of Pauli operators on subspaces of Hilbert 
space as defined above. Over the Minkowski linear faces of the resulting 
geometric complex, standard relativistic quantum theory, including quantum 
field theory, is assumed to hold, where we propose the usual p~ = ion. (h  = 

1) identification of derivatives along the cr~ axes with energy-momentum 
observables. Thus, quantum uncertainty is built into the foundations of our 
general relativistic model from the start, since information is extracted from 
the model only via the usual quantum expectation value formula ~ = (d? I ct I t~) ,  
with uncertainty intrinsically included by Act = [ct 2 - ~2]1/2. Of course, as 
the correspondence principle requires, at a macroscopic level our piecewise 
linear quantum manifold would mimic the locally Lorentz manifold of stan- 
dard general relativity, except at the boundary singularities, which we interpret 
as nonvacuum states. It is these dimensional singularities as boundaries that 
give our model its general relativistic character, since they make our base 
manifold only piecewise linear, and hence allow the nonlinear behavior char- 
acteristic of topologically more interesting manifolds. An open question 
remains as to the precise formulation of physics at such boundaries--their 
one-dimensionatity might suggest strings of some sort, though it would be 
premature to make such an identification at this point- -but  this seems no 
more of a problem than the interpretation of singularities in any general 
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relativistic model, and at least in the construction presented here, we can begin 
to see how such dimensional singularities arise naturally from quantum theory. 
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